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Summary

� Plants with Crassulacean acid metabolism (CAM) have long been associated with a specia-

lized anatomy, including succulence and thick photosynthetic tissues. Firm, quantitative

boundaries between non-CAM and CAM plants have yet to be established – if they indeed

exist.
� Using novel computer vision software to measure anatomy, we combined new measure-

ments with published data across flowering plants. We then used machine learning and phy-

logenetic comparative methods to investigate relationships between CAM and anatomy.
� We found significant differences in photosynthetic tissue anatomy between plants with dif-

fering CAM phenotypes. Machine learning-based classification was over 95% accurate in dif-

ferentiating CAM from non-CAM anatomy, and had over 70% recall of distinct CAM

phenotypes. Phylogenetic least squares regression and threshold analyses revealed that CAM

evolution was significantly correlated with increased mesophyll cell size, thicker leaves, and

decreased intercellular airspace.
� Our findings suggest that machine learning may be used to aid the discovery of new CAM

species and that the evolutionary trajectory from non-CAM to strong, obligate CAM requires

continual anatomical specialization.

Introduction

Carbon-concentrating mechanisms increase the efficiency of
photosynthesis by raising the concentration of CO2 inside photo-
synthetic tissues relative to the ambient environment. The most
common carbon-concentrating mechanism, Crassulacean acid
metabolism (CAM), was first discovered because of marked phy-
siological differences between succulent and nonsucculent
plants (de Saussure, 1804). Generally, CAM species conduct gas
exchange at night to reduce transpirational water loss; the noctur-
nally fixed carbon is stored as malic acid overnight and released
the next day behind closed stomata, thereby saturating photosyn-
thetic tissues with CO2 (Osmond, 1978). Although the co-
occurrence of CAM and succulent anatomy is so consistent that
botanists have used it as a guide to find new CAM plants (Cou-
tinho, 1969), quantitative relationships between anatomy and
CAM remain elusive.

Crassulacean acid metabolism and succulence may be corre-
lated because they are co-selected as adaptations to water limita-
tion. CAM species can be up to eightfold as water use efficient as
C3 species (Winter et al., 2005), and the water stored in succulent
plants is essential for drought avoidance (Males, 2017). Although

such a correlation does not necessarily imply that derived anat-
omy is a prerequisite of, or is caused by, CAM evolution, there
are at least two hypothesized direct functional links between
CAM and succulent anatomy. First, storage of nocturnally fixed
CO2 as malic acid in mesophyll vacuoles may require large
vacuoles in photosynthetic cells and therefore larger, succulent
mesophyll cells (Zambrano et al., 2014; T€opfer et al., 2020). Sec-
ond, increased succulence in mesophyll cells may lower intercel-
lular air space (IAS) and therefore mesophyll CO2 conductance
(gm; Nelson & Sage, 2008; Cousins et al., 2020). In a study of
Kalancho€e daigremontiana, Maxwell et al. (1997) found the CO2

partial pressures of leaf IAS and at Rubisco carboxylation sites to
be 205 and 109 lbar, respectively, demonstrating that CO2 dif-
fusion is strongly limited in this succulent CAM species.
Thus, increased succulence may increase selection for CAM by
lowering the efficiency of C3 photosynthesis, particularly in high-
temperature environments that exacerbate photorespiration (Nel-
son & Sage, 2008; Edwards, 2019). It is also possible that the
evolution of CAM does not entail selection on succulence per se,
but that the use of CAM reduces constraints on succulence evolu-
tion by removing gm limitations due to carbon concentration
(Leverett et al., 2023).
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Quantitative studies of CAM and anatomy have mostly been
restricted to relatively few taxa at the extremes of the CAM phe-
notypic spectrum, but have generally found positive correlations
between CAM and succulence. Individual studies have reported
that CAM species tend to have greater leaf thickness (LT) and
larger mesophyll cell area (MA), although mixed trends have been
observed for IAS (Nelson et al., 2005; Nelson & Sage, 2008;
Zambrano et al., 2014; Earles et al., 2018; Luj�an et al., 2022);
however, a recent meta-analysis of these relationships found
inconsistent trends across clades (Herrera, 2020). Recently,
hybrids between species with different photosynthetic types have
been used to study the relationships between CAM activity and
anatomical traits. In both Yucca (Agavoideae, Asparagaceae; Hey-
duk et al., 2020) and Cymbidium (Epidendroideae, Orchidaceae;
Yamaga-Hatakeyama et al., 2022), hybrids of C39CAM crosses
possessed intermediate anatomical phenotypes and CAM activity.
Within Yucca hybrid genotypes, however, the correlations
between CAM activity and anatomy decreased in magnitude or
disappeared entirely (Heyduk et al., 2020).

The mosaic of past research provides limited insight into the
evolution of CAM and photosynthetic tissue anatomy because it
has focused on the extremes of CAM phenotypes (i.e. non-CAM
species and species that use CAM as their primary metabolism).
However, there are many recognized CAM phenotypes that differ
in pattern and magnitude of CAM activity. CAM activity varies
along multiple axes, including the degree to which is it facultative
or constitutive, the extent of nocturnal stomatal conductance,
and the amount of CO2 sequestered as malic acid (Winter, 2019;
Gilman et al., 2023). Despite the diversity in CAM activity, most
CAM-capable species either use CAM as their primary method
of carbon fixation or use CAM for a small minority of carbon
fixation, as evidenced by carbon isotope ratios (Messerschmid
et al., 2021). Here, we use term ‘CAM’ to refer to all species cap-
able of CAM, regardless of strength or pattern of expression, and
‘minority CAM’ (mCAM) and ‘primary CAM’ (pCAM) to refer
to species that fix the minority and majority of CO2 with CAM,
respectively. Primary CAM is consistent with past definitions
of ‘CAM plant’ (Winter, 2019) and ‘strong CAM’ (Edwards,
2019, 2023), while mCAM encompasses species that can faculta-
tively use CAM or constitutively use CAM at low levels, but pri-
marily use C3 or C4 photosynthesis for CO2 assimilation
(mCAM = ‘C3 +CAM’ of Edwards, 2019, but with the inclusion
of C4 +CAM species). We use the term ‘succulence’ to refer to
tissues with enlarged living cells that store large amounts of with-
drawable water, and typically exhibit larger cells, thicker leaves,
and reduced IAS. This broad definition masks vast diversity
in succulent anatomy at the cellular- and whole plant levels
(Males, 2017). It is generally assumed that the evolution of
pCAM requires transitioning through mCAM (Hancock &
Edwards, 2014; Yang et al., 2015; Edwards, 2019), but the rela-
tive timings of anatomical shifts during the evolution of mCAM
and pCAM – and whether or not mCAM species possess a spe-
cialized anatomy – remain open questions.

Here, we combined anatomical measurements from thousands
of angiosperm species from over 200 families to draw anatomical
boundaries between non-CAM, mCAM, and pCAM phenotypes.

Using supervised machine learning, we were able to classify CAM
phenotypes from anatomical measurements with moderate to
high accuracy. Finally, in a detailed study of the Portullugo clade
(Fig. 1), we reconstructed the evolution of CAM and used phylo-
genetic comparative methods to establish significant relationships
between anatomy and CAM evolution. Our findings support the
hypothesis that CAM evolution entails anatomical evolution and
reveal nuances about the earliest stages of CAM evolution.

Materials and Methods

Public anatomical data sets, taxon sampling, and specimen
imaging

Publicly available data were gathered from the TRY (Fraser, 2020)
and BROT2 (Tavs�ano�glu & Pausas, 2018) plant trait databases
and individual studies of CAM anatomy in Orchidaceae (Silvera
et al., 2005), Bromeliaceae (Males, 2018), Asparagaceae (Heyduk
et al., 2016), Caryophyllales (Ogburn & Edwards, 2012, 2013),
Papua New Guinean epiphytes (Earnshaw et al., 1987), Clusia-
ceae (Luj�an et al., 2022), and across angiosperms (Nelson &
Sage, 2008; Supporting Information Table S1). These data con-
tained observations of MA, LT, mesophyll IAS, leaf dry matter
content (LDMC), and specific leaf area (SLA) per unit dry mass.
We generated two new datasets of MA, IAS, and LT for members
of the Asparagaceae (subfamilies Agavoideae and Nolinoideae)
and Portullugo (the clade inclusive of families Anacampserota-
ceae, Basellaceae, Cactaceae, Didiereaceae, Montiaceae, Mollugi-
naceae, Portulacaceae, and Talinaceae; Table S2). In 2017, leaf
cross sections were taken from 15 Portullugo species grown at
Brown University, Providence, RI. Tissue sections were immedi-
ately placed in 10% neutral buffered formalin and sent to the
Veterinary Diagnostic Laboratories of the College of Veterinary
Medicine at the University of Georgia (Athens, GA) for fixation,
embedding, and sectioning and staining with toluidine blue. In
the spring of 2019, we collected leaf or stem cross sections of 41
species of Asparagaceae and 38 species of Portullugo growing at
the Desert Botanical Garden (Phoenix, AZ); fixed specimens
were created as above and imaged on an Olympus BX51 micro-
scope (Evident Corp., Toyko, Japan) with an Infinity3-3UR
camera (Teledyne Lumenera, Ottawa, Canada). To supplement
our sampling, we were provided high-resolution images of leaf
cross sections of 13 Portulaca (Portulacaceae) species used in
Ocampo et al. (2013) by the authors.

The multiple data sets had some taxonomic overlap and some
included multiple measurements from multiple accessions of the
same species. To reduce our data set to one observation per spe-
cies, we took the mean of each feature where multiple accessions
were measured; these mean species values were used as the basis
for analysis throughout. We binned each taxon into three CAM
phenotypes based on Gilman et al. (2023) and references therein:
C3, C3–C4, and C4 taxa were coded as ‘non-CAM’; taxa that fix
the minority of their daily CO2 with CAM (C3 +CAM, C3–
C4 +CAM, and C4 +CAM) were coded as mCAM; and taxa
that primarily use CAM to fix CO2 (i.e. over 50%, resulting in
d13C ratios ≥�18.7&; Winter & Holtum, 2002) as pCAM.
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The final data set contained observations from 5316 non-CAM,
207 mCAM, and 222 pCAM taxa (Dataset S1).

Measuring plant anatomy

Automated analyses of plant tissues can be difficult because many
or most cells are in direct contact with other cells around much
of their perimeters, rather than being separated by clear bound-
aries. We developed a lightweight image segmentation tool built
in Python 3 with OPENCV v.4.5.2 (Bradski, 2000) called MINI-

CONTOURFINDER to facilitate measurement of histology slides.
Segmentation in MINICONTOURFINDER is accomplished through
a combination of thresholding, gradient, and morphological
operations (Methods S1; Fig. S1). MINICONTOURFINDER was
designed to allow users with minimal experience on the com-
mand line or image processing to quickly generate accurate
and reproducible contours, particularly from plant histology
images. MINICONTOURFINDER can be run through the command
line or a graphical user interface to tune contours in real time.
We used MINICONTOURFINDER to measure MA in our new
Asparagaceae and Portullugo data sets. We used IMAGEJ v.1.53
(Schneider et al., 2012) to calculate LT (for leafy species) and
IAS (in roughly 300 lm9 300 lm areas of mesophyll). All

measurements were taken within chlorenchymous tissues and
therefore excluded hydrenchyma, if present.

Statistical analysis

We investigated group differences in anatomical measurements by
assessing normality and homoscedasticity, comparing raw and
transformed data, testing for group differences, and finally using
post hoc tests to identify group differences. We first assessed
assumptions of normality using D’Angostino and Pearson’s test
(D’Agostino & Pearson, 1973) and homoscedasticity using Bar-
tlett’s test (Bartlett, 1937) of raw and log10-transformed data. None
of the features were normal when raw or transformed, but log10-
transformation substantially decreased heteroscedasticity: All trans-
formed features were homoscedastic except SLA, which was much
less heteroscedastic (Fig. S2; Table S3). We therefore continued
with Kruskal–Wallis (KW) tests for group differences (Kruskal &
Wallis, 1952) with the transformed data, and Dunn’s post hoc tests
(Dunn, 1964) where KW tests revealed significant group differ-
ences. We tested for correlations between transformed features
using Pearson’s r (Pearson, 1895). All statistical analyses were per-
formed using PYTHON v.3.7.12, SCIPY v.1.5.3 (Virtanen
et al., 2020), and SCIKIT-POSTHOCS v.0.6.4 (Terpilowski, 2019).

500 μm

500 μm500 μm

(a)

(d) (e) (f)

(b) (c)

Fig. 1 Gross morphology (a–c) and photosynthetic tissue anatomy (d–f) of Portullugo species with varying Crassulacean acid metabolism (CAM)
phenotypes sampled for this study: (a, d) non-CAM Claytonia lanceolata Pursh (Montiaceae) (b, e) minority CAM Calyptridium umbellatum (Torr.)
Greene (Montiaceae), (c, f) primary CAM Ariocarpus retusus Scheidw. (Cactaceae). Nonauthor photograph credits: (a) Dr. Thomas Stoughton, (b) Anri
Chomentowska, and (c) Desert Botanical Garden, Phoenix, AZ, USA.
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Supervised classification

We attempted to classify species’ CAM phenotypes based on
anatomy using the supervised learning method gradient boosting,
implemented with XGBoost via the Python package XGBOOST

v.1.5.0 (Chen & Guestrin, 2016). XGBoost implements gradient
tree boosting algorithms (Friedman et al., 2000; Friedman, 2001)
that use greedy learning over an ensemble of regression trees to
train classification models. XGBoost is rare in that it can accept
observations with missing values without the need for data impu-
tation. We conducted multiclass classification of non-CAM,
mCAM, and pCAM taxa and a simpler, binary classification of
non-CAM and CAM taxa, where mCAM and pCAM taxa were
combined. We explored a variety of alternative parameterizations:
changing the default booster (gbtree) to DART (Rashmi &
Gilad-Bachrach, 2015), which can reduce overfitting by ran-
domly dropping decision trees; changing the objective function
(softmax or softprob for multiclass classification; logistic prob-
ability, logistic raw score, or hinge loss for binary classification);
and changing the evaluation metric (multiclass logloss, AUC, or
multiclass error rate for multiclass classification; error rate for
binary classification; the AUC evaluation metric required a soft-
prob objective function). In all cases, we randomly divided our
data set between training (80%) and testing (20%).

We also tried several strategies to reduce the effects of highly
imbalanced classes and sparsity. We attempted to reduce class
imbalance by adjusting the parameter ‘max_delta_step’ (MDS),
by random over- or under-sampling our training data, and by
merging mCAM and pCAM into a binary classification model.
Increasing MDS above its default (0) creates an additional pen-
alty that reduces splitting within trees, or the addition of trees
entirely, in highly imbalanced data sets. Random oversampling
(ROS) resamples minority classes until all class labels are equal
(augmenting training data), while random under-sampling
(RUS) subsamples classes until all class labels are equal (reducing
training data). Our data were also quite sparse (67% missing
data) because we merged data from largely nonoverlapping stu-
dies. We evaluated three data imputation strategies: median
(missing features were imputed with the median), iterative (miss-
ing features were imputed by regression of present features), and
K-nearest neighbors (Knn; missing features were imputed using
the nearest neighbors in a Knn embedding).

Phylogenetic tree inference

The Portullugo, the clade inclusive of the Portulacineae (families
Anacampserotaceae, Basellaceae, Cactaceae, Didiereaceae, Mon-
tiaceae, Portulacaceae, and Talinaceae) and its sister clade (Mol-
luginaceae) is well-suited for large, comparative phylogenetic
studies because of recent sequence data, its diversity of CAM phe-
notypes, and the overlap between anatomical data and extant
phylogenies. We constructed a new phylogeny of the Portullugo
by merging two previously published sequence matrices that were
obtained using different techniques. The first dataset consisted of
841 loci from transcriptomic data used to study the evolution
of Portulacineae and its adaptation to harsh environments (Wang

et al., 2019). The second dataset was a targeted enrichment of 83
gene families, primarily with roles in plant respiration and photo-
synthesis (Goolsby et al., 2018; Hancock et al., 2018; Moore
et al., 2018). To find common loci between the datasets, we inde-
pendently called consensus sequences for each locus and mapped
them against the sugar beet (Beta vulgaris ssp. vulgaris L.) genome
assembly v.EL10_1.0 (McGrath et al., 2022) using BLAST

v.2.13.0 (Camacho et al., 2009). Mapping consensus sequences
for each locus proved more accurate than using random represen-
tative sequences for a given locus due to high sequence variation.
If consensus loci hit multiple reference scaffolds, we retained the
reference locus with the highest bitscore. We used the resulting
mapping coordinates to search for potential overlapping loci
between datasets and aligned them using MAFFT v.7.508 (Katoh
& Standley, 2013). Loci showing considerable dataset overlap
were concatenated to create an initial matrix of loci represented
by both datasets, and then flanked with seven randomly selected
nonoverlapping loci from each dataset to increase the number of
taxa included and overall matrix size.

We concatenated all loci and constructed a maximum
likelihood-based tree using IQ-TREE v.2.2.0.3 (Minh et al.,
2020). Within IQ-TREE, a model of sequence evolution was
selected using the automated model finder (Kalyaanamoorthy
et al., 2017) constrained to the GTR family of models; node sup-
port was assessed using ultrafast bootstrap approximation (Hoang
et al., 2017). We time-calibrated the tree using the fast least
squares dating method (To et al., 2016) included in IQ-TREE

using the entire concatenated sequence matrix and 13 secondary
node calibrations used by Wang et al. (2019) from Arakaki
et al. (2011; Table S4); the topology was constrained to that pro-
duced during our initial run of IQ-TREE. Confidence intervals
were inferred from 100 resamplings of branch lengths by drawing
new clock rates (log-normal distribution with mean 1 and stan-
dard deviation 0.2), tip dates were set to 0, and a GTR + F substi-
tution model was selected with the automated model finder.

Phylogenetic trait analyses

We reconstructed the evolutionary history of CAM in the Portul-
lugo using stochastic character mapping (Nielsen, 2002; Huel-
senbeck et al., 2003) implemented with the ‘make.simmap’
function of the R package ‘PHYTOOLS’ v.1.2-0 (Revell, 2012). We
modeled CAM evolutionary history assuming (1) an all rates dif-
ferent (ARD) model, and (2) a constrained ARD model without
reversions from pCAM to mCAM; both models assumed a root
state of non-CAM. The constraint of the latter model was
informed by the lack of evidence for reversions from pCAM
throughout vascular plants. In all analyses, we pruned our tree to
one sample per species and node reconstructions were visualized
as pie charts summarizing the state frequencies over 10 000
stochastic maps.

To assess the relationships between CAM phenotypes and ana-
tomical traits in the Portullugo, we used a threshold model of
trait evolution (Wright, 1934; Felsenstein, 2005), implemented
with the ‘threshBayes’ function (Revell, 2014) of ‘PHYTOOLS’
v.1.2-0, and phylogenetic least squares (PGLS) regression
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(Grafen, 1989), implemented with the R package ‘NLME’ v.3.1-
162 (Pinheiro et al., 2023). We used PGLS regression to assess
relationships between continuous anatomical traits and between
anatomical traits and discrete CAM phenotypes (as a predictor
variable). We used threshold models to measure the correlations
between anatomical traits and CAM phenotype. In all analyses,
our tree was pruned to match the taxa with anatomical data and
reduced to one sample per taxon where necessary. Each MCMC
sampler for threshold analyses was run for 5000 000 steps and
posterior distributions were constructed after discarding the
initial 20% of samples as burn-in.

Results

Nonphylogenetic analyses of anatomy across angiosperms
demonstrated significant group differences for all five anatomical
features investigated (Table S5). Dunn’s post hoc tests identified
significant (P < 0.05), and generally consistent, differences
between CAM phenotypes for most features: the largest differ-
ences were observed between non-CAM and pCAM phenotypes,
with mCAM intermediate but not always significantly different
from both non-CAM and pCAM (Fig. 2). Where sufficient data
were available, these trends were supported within individual
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Fig. 2 Results of Dunn’s post hoc tests for group
differences between log10-transformed features:
(a) mesophyll cell area (MA); (b) leaf thickness
(LT); (c) intercellular airspace (IAS); (d) leaf dry
matter content (LDMC); (e) specific leaf area
(SLA). Purple, yellow, and green box-and-
whisker plots show non-Crassulacean acid meta-
bolism (non-CAM), minority CAM (mCAM),
and primary CAM (pCAM) trait distributions;
boxes represent the interquartile range (IQR)
with a line representing the median, whiskers
showing 1.59 the IQR, and points outside con-
sidered outliers; ns, nonsignificant.
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families (Fig. S3). We found significant negative correlations
between MA and LDMC, between LT and SLA, LDMC, and
IAS, and between LDMC and SLA; a significant positive correla-
tion was found between LT and MA (Fig. S4).

Multiclass classification with XGBoost yielded similar results
regardless of evaluation metric or objective function, with booster
choice being the only source of variation (Fig. S5). Because of the
similarity of those results, we only continued using models with

non-CAM CAM

1032 8

31 78

gbtree+hinge+ROS

True phenotype

Pr
ed

ic
te

d 
ph

en
ot

yp
e

non-CAM mCAM pCAM

no
n-

C
AM

m
C

AM
pC

AM

True phenotype

Pr
ed

ic
te

d 
ph

en
ot

yp
e

992 9 4

41 38 6

15 6 38

no
n-

C
AM

C
AM

gbtree+merror+ROS

(a)

(b)

(c)

(e) (f)

(d)

DA
RT

+R
OS

+R
US

+I
te

r.
+K

nn
+M

ed
.

+M
DS

1
+M

DS
2

+M
DS

5
+M

DS
10

gb
tre

e
+R

OS
+R

US
+I

te
r.

+K
nn

+M
ed

.
+M

DS
1

+M
DS

2
+M

DS
5

+M
DS

10

0%
5%

10%
15%
20%
25%
30%

M
ea

n 
cl

as
si

fic
at

io
n 

er
ro

r

Train
Test

Lo
gis

tic

Lo
git

raw
Hing

e

Lo
gis

tic
+ROS

Lo
git

raw
+ROS

Hing
e+

ROS
1%

2%

3%

4%

5%

C
la

ss
ifi

ca
tio

n 
er

ro
r

Train
Test

0.5

0.6

0.7

0.8

0.9

1.0

non-CAM
CAM

Precision
Recall

Lo
gis

tic

Lo
git

raw
Hing

e

Lo
gis

tic
+ROS

Lo
git

raw
+ROS

Hing
e+

ROS

DA
RT

+R
OS

+R
US

+I
te

r.
+K

nn
+M

ed
.

+M
DS

1
+M

DS
2

+M
DS

5
+M

DS
10

gb
tre

e
+R

OS
+R

US
+I

te
r.

+K
nn

+M
ed

.
+M

DS
1

+M
DS

2
+M

DS
5

+M
DS

10

0.0

0.2

0.4

0.6

0.8

1.0

non-CAM mCAM pCAM Precision Recall

R
at

e

R
at

e

New Phytologist (2024) 242: 1029–1042
www.newphytologist.com

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

Research

New
Phytologist1034

 14698137, 2024, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19488 by M

ichigan State U
niversity, W

iley O
nline L

ibrary on [15/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the softprob objective function and multiclass error rate (merror)
evaluation metric (hereafter, DART and gbtree ‘base models’).
The two base models had similar cross-validation test accuracies
(96.0� 1.1%; Fig. 3a), precision and recall of non-CAM,
mCAM, and pCAM (Fig. 3b), and feature importance rankings
(LT >MA > IAS ≥ LDMC > SLA; Fig. S6; Table S6). No
imbalance-reduction sampling, imputation method, or alterna-
tive parameterization increased overall accuracy (Fig. 3a); how-
ever, ROS and RUS increased recall for mCAM and pCAM taxa
(Fig. 3b). Between models of similar accuracy, we prioritized
improving mCAM recall (also known as sensitivity in binary clas-
sification; true positives/true positives + false negatives) because
true negative rates of mCAM are not well known in most CAM-
evolving clades. While decreased non-CAM classification accu-
racy slightly decreased overall model accuracy, ROS raised recall
rates of mCAM and pCAM classification to 70% and > 75%,
respectively. Although RUS further increased mCAM and
pCAM recall (Fig. 3b), the substantial difference between train-
ing and testing accuracy (Fig. 3a) suggested that these models
were overfit. To further address class imbalance, we combined
mCAM and pCAM into a single ‘CAM’ category and attempted
binary classification. Binary classification models had similar test
accuracies (Fig. 3c), but the hinge objective function yielded
slightly higher CAM precision and recall. As in multiclass classifi-
cation, ROS greatly increased CAM recall, but the F1-score
(29 precision9 recall/precision + recall) remained unchanged
because of an equal magnitude drop in precision (Fig. 3d).

Our preferred multiclass and binary classifiers both used gbtree
boosters and ROS, and the hinge objective function for binary
classification (Fig. 3e,f). Mean cross-validation accuracies were
95.7� 0.7% and 96.1� 0.6% for multiclass and binary models,
respectively (Fig. 3a,c). Most non-CAM taxa incorrectly classified
by multiclass models belonged to clades with diverse CAM phe-
notypes (e.g. Bromeliaceae and Orchidaceae subfamily Epiden-
droideae), and mCAM taxa were roughly equally classified as
non-CAM or pCAM (Fig. 3e; Table S7). Similarly, most incor-
rect predictions by the binary model were non-CAM species
from CAM-evolving lineages classified as CAM (Fig. 3e;
Table S8); generally, these taxa have not been thoroughly assessed
for mCAM, and so it is possible that they may actually have a
facultative or very weak CAM cycle.

Our time-calibrated species tree was mostly congruent with
those from which the data were compiled. The 77 transcriptome-
based samples (representing 77 unique species) and the 175 tar-
get enrichment-based samples (144 unique species) had only
16 species in common, and thus, their combination greatly

expanded sampling throughout the Portullugo. Of those species
sampled in both datasets, 13 were monophyletic in the final tree
(Fig. S7); with samples of Alluaudia dumosa, A. procera, and
Calyptridium umbellatum recovered as more closely related to
other samples within their respective datasets. Support was gener-
ally high, although multiple nodes along the backbone were unre-
solved and left as polytomies in downstream analyses (Figs 4,
S7). Stochastic character map reconstructions of CAM evolution
suggested that mCAM evolved at the base of the Portulacineae,
and that multiple transitions to pCAM occurred in the Cactaceae
and Didiereaceae, while multiple reversions to non-CAM
occurred in the Montiaceae (Fig. 4). Though similar, we pre-
ferred a constrained ARD model of CAM evolution (Figs 4, S8)
to an unconstrained model (Fig. S9) because there is no strong
empirical evidence of reversions from pCAM in any vascular
plant lineage.

Significant phylogenetic signal was detected in all three traits
measured across the Portullugo (Table S9). Phylogenetic least
squares regression revealed multiple significant (P < 0.05) rela-
tionships among anatomical traits and between anatomical traits
and CAM phenotype (Fig. 5; Table S10). However, AIC-based
model selection favored a model between MA and IAS with a
non-significant slope, contrary to our expectation that greater
mesophyll cell size would lead to lower IAS (Fig. 5a).
Greater MA was a significant (P < 0.0001) predictor of greater
LT (Fig. 5b), and we found no relationship between IAS and
LT (Fig. 5c). CAM phenotype was a significant predictor of MA,
LT, and IAS (Fig. 5d–f). We next used phylogenetic threshold
analyses to estimate the correlations between CAM phenotype
and anatomical traits under the hypothesis that there may be ana-
tomical boundaries between CAM phenotypes. Threshold
analyses mostly supported PGLS results, and recovered signifi-
cant positive correlations between CAM phenotype and both
MA and LT (Fig. 6a,b). However, the posterior distribution of
correlation coefficients between CAM phenotype and IAS nar-
rowly included 0 (Fig. 6c).

Discussion

From the beaks of Galapagos finches (Darwin, 1839) to unique
inflorescence architectures (Waal et al., 2012), the links between
form and function have always inspired biologists. Fixed in place,
with passive mechanisms for carbon and water acquisition, plants
rely on anatomical innovations to adapt to different environ-
ments. Succulence has long been understood as a drought avoid-
ance adaptation, but its relationship with CAM has not been

Fig. 3 Machine learning model accuracies. Mean classification error (a, c), precision and recall rates (b, d), and best-performing model confusion matrices
(e, f) for multiclass and binary classifiers. Multiclass models (a, b) varied in booster (DART or gbtree), sampling strategy (random oversampling (ROS) or
random under-sampling (RUS)), imputation method (iterative, Knn, or median), and MDS (1, 2, 5, or 10); binary models (c, d) varied in objective function
(logistic, logitraw, or hinge) and sampling strategy (with or without ROS). Error bars in (a, c) represent standard error of the mean. The columns of each
confusion matrix (e, f) show the number of true Crassulacean acid metabolism (CAM) phenotypes in the test data set and the rows show the model predic-
tions. The diagonal in each matrix represents correct model predictions and off-diagonal elements show incorrect predictions; for example, a true pCAM
species predicted to be non-CAMwould be shown in the first row, the third column of (c). Knn, K-nearest neighbors; MDS, max_delta_step; mCAM, min-
ority CAM; pCAM, primary CAM. Base models are in bolded text and the best-performing models are highlighted in red.
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resolved as causal or merely coincidental. Through our broad sur-
vey of angiosperms and detailed study of the Portullugo, we
found support for previous hypotheses of CAM and photosyn-
thetic tissue anatomy co-evolution. Furthermore, we demonstrate

that the presence or absence of CAM may be predicted using only
a handful of anatomical measurements.

Anatomical measurements from over 200 angiosperm families
revealed significant differences in photosynthetic tissue anatomy
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→

→
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→

→

→

New Phytologist (2024) 242: 1029–1042
www.newphytologist.com

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

Research

New
Phytologist1036

 14698137, 2024, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19488 by M

ichigan State U
niversity, W

iley O
nline L

ibrary on [15/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



of non-CAM, mCAM, and pCAM species. The larger mesophyll
cell size of both mCAM and pCAM species suggests some anato-
mical specialization is required to perform CAM in any capacity,
and the reduction in intercellular airspace of pCAM species indi-
cates that further specialization is required to use CAM for pri-
mary carbon metabolism. We also showed significant increases in
LT and decreases in LDMC from non-CAM to mCAM to
pCAM, as well as significantly lower SLA in pCAM species,
which support past findings that thicker and more succulent
leaves are positively associated with strong CAM activity within
individual clades (Teeri et al., 1981; Winter et al., 1983; Nelson
et al., 2005; Nelson & Sage, 2008; Zambrano et al., 2014; Luj�an
et al., 2022).

Because lineage-specific organismal detail will surely influence
physiology–anatomy relationships, analyses of anatomy and
CAM evolution are best evaluated using phylogenetic compara-
tive methods. PGLS regression and phylogenetic threshold analy-
sis supported the correlated evolution of larger mesophyll cells
and thicker leaves. Although PGLS regression further showed a
continuous decrease in IAS from non-CAM to pCAM species,
we found no significant relationship between IAS and MA. That
IAS and MA may evolve independently of one another provides
an important nuance to the co-evolution of succulence and
CAM. Decreased IAS in CAM species has often been discussed
as an adaptation to reduce CO2 efflux during malate decarboxyla-
tion (Nelson & Sage, 2008) or as a consequence of increased suc-
culence restricting gm, which would limit CO2 fixation by
Rubisco during the day (Maxwell et al., 1997; Zambrano
et al., 2014; Earles et al., 2018; Edwards, 2019). More recently,
reduced IAS has been hypothesized to be an indirect consequence
of increased mesophyll cell volume used for malic acid storage
(Leverett et al., 2023). While we found that succulence generally
increased with CAM evolution, the decoupling of the underlying
traits may allow the evolution of intermediate photosynthetic
and anatomical phenotypes that efficiently utilize both CAM and
C3 or C4 photosynthesis. These conclusions are consistent with
photosynthetic models that found increased vacuolar volume
(and therefore MA) necessary for CAM (T€opfer et al., 2020) and
empirical findings that the high IAS in mCAM species may allow
for C3 (or C4) photosynthesis when plants are not engaging
CAM (Nelson & Sage, 2008; Zambrano et al., 2014). Further-
more, the lowest IAS values in the Portullugo were observed in
pCAM species, which reinforces the hypothesis that extremely
low IAS may reduce gm and thus C3 or C4 efficiency (Maxwell
et al., 1997).

In addition to providing support for a positive relationship
between CAM and succulence, our findings point toward interac-
tions between life history, CAM, and succulence for those taxa
that do not neatly fall along regression lines. Phylogenetic

analyses of the Portullugo showed general increases in succulence
and a tightening of the distributions of underlying traits for
pCAM species. By contrast, mCAM taxa had both the single lar-
gest MA and greatest IAS observations, with values that mostly
spanned the non-CAM to pCAM range. The eight largest
observed MA values in the Portullugo were from mCAM species;
most are annual species, with the exceptions of Parakeelya flava (a
perennial geophyte with aboveground tissues that regrow
annually) and Grahamia bracteata and Talinopsis frutescens
(which have nonsucculent woody stems and drought-deciduous
leaves). This suggests that the evolution of pCAM requires a shift
to a (functional) perennial life history with long-lived photosyn-
thetic tissues (Hancock et al., 2019); indeed, we are unaware of
any annual pCAM species. The halophyte Halophytum ameghinoi
had the second-largest observed MA in the Portullugo. While sal-
ine soils may select for increased succulence to maintain cytosolic
ion balance (Naidoo & Rughunanan, 1990; Ogburn &
Edwards, 2010), high salt concentrations inhibit the central
CAM enzymes phosphoenolpyruvate carboxylase (PEPC) and
malic enzyme (ME; Kluge & Ting, 1978), and may therefore
represent an ecological constraint on the evolution of pCAM.

Our ancestral state reconstruction of CAM in the Portullugo
was the first to model CAM as an ordered multistate trait, and
supported an early- to mid-Eocene origin of mCAM – a time
when the Earth’s atmosphere had relatively high levels of CO2

(Rae et al., 2021). The reconstruction of mCAM at the crown of
the Portulacineae agrees with transcriptomic data that suggest a
single recruitment event of a PEPC ortholog for use in CAM
(Christin et al., 2014; Goolsby et al., 2018). All transitions to
pCAM were found be within the past 30Ma (Sage et al., 2023),
congruent with shifts across angiosperms (including within Car-
yophyllales) to C4 photosynthesis, as atmospheric CO2 fell below
500 ppm (Christin et al., 2011). Despite declining CO2 in the
Oligocene and Miocene, multiple lineages within the Montiaceae
have lost the ability perform CAM. Although we expect more
Montiaceae lineages to exhibit CAM upon experimentation,
multiple independent losses of CAM have been experimentally
validated in Parakeelya (Hancock et al., 2019), a clade endemic
to hot, dry areas of Australia. While life history may constrain the
evolution of pCAM, it remains unclear why some members of
the Portulacineae transitioned to C3 photosynthesis, while others
simultaneously transitioned to pCAM, as CO2 continued to
decline. We suspect that these losses of CAM may be linked
to shifts in phenology; for example, C3 Parakeelya grow in either
monsoonal areas with abundant moisture, or in cooler regions
with lower growing season temperatures.

Most clades with CAM lineages show highly bimodal distribu-
tions of carbon isotope ratios (Messerschmid et al., 2021) that
have been used for decades to identify pCAM species, but are

Fig. 4 Time-calibrated phylogeny of the Portullugo with inferred transitions between Crassulacean acid metabolism (CAM) phenotypes. The Portullugo
and Portulacineae nodes are highlighted, and color gradients indicate transitions between non-CAM (purple), mCAM (yellow), and pCAM (green) based
on the results of our biologically informed ancestral state reconstruction. Pie charts at nodes bracketing inferred transitions show the fractions of stochastic
maps supporting each ancestral state. This tree has been pruned to show only those taxa with morphological data used in this study and therefore not all
transitions are shown; the full tree is shown in the inset and multiple ancestral state reconstructions are available in the Supporting Information.
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generally unable to distinguish mCAM from non-CAM. Labor-
ious controlled experiments (e.g. of gas exchange or malic acid
content) with live plants have been the only ways to identify
mCAM, but such experiments are not feasible for many long-
lived, rare, or difficult-to-cultivate species. We found that differ-
ences in photosynthetic anatomy across angiosperms translated
into moderate to high accuracy in predicting CAM phenotype.

After assessing a variety of machine-learning models, we found
that ROS increased the recall of mCAM and pCAM species while
not overfitting to training data. To our knowledge, machine
learning has not yet been applied to predict the presence or
absence of physiological traits from anatomical measurements,
such as CAM phenotypes. We believe that the accuracy we
obtained represents a lower bound on the true accuracy of our
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Fig. 5 Results of phylogenetic least
squares regressions. Fitted regression
results between anatomical features (a–c)
and between anatomical features and
CAM phenotype (d–f). Predictor and
response variables are shown on the
horizontal and vertical axes, respectively.
Points show trait values for non-
Crassulacean acid metabolism (non-CAM;
purple), minority CAM (mCAM; yellow),
and primary CAM (pCAM; green) species.
Solid and dashed grey lines show the
fitted regression lines using Brownian
motion (BM) and Ornstein–Uhlenbeck
(OU) models of trait evolution, respec-
tively. Significant best-fit relationships are
shown with bold black lines, associated
model coefficients, and grey shading to
show standard error. IAS, intercellular air-
space; LT, leaf thickness; MA, mesophyll
cell area.
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models because some of our potentially misclassified non-CAM
species have not been thoroughly investigated for mCAM. For
example, multiple orchid and bromeliad species labeled as non-
CAM were predicted to be mCAM, but have not been subjected
to drought experiments that might induce CAM activity. We
predict that some misclassified species, such as Nolina bigelovii
(Asparagaceae) will exhibit CAM upon experimentation, result-
ing in more true positive predictions. Experimentation should
continue to be the gold standard for determining CAM pheno-
types, but machine learning models, such as those developed
here, could play a valuable role in prioritizing study species and
would only require small tissue sections for initial fixation
and measurement. More broadly, the expansion of online data-
bases, such as the Royal Botanic Gardens’ Microscope Slide Col-
lection (https://www.kew.org/science/collections-and-resources/
collections/microscope-slide-collection), in combination with
machine learning tools for analyzing herbarium specimens (e.g.
Wilde et al., 2023), offer new opportunities for testing evolution-
ary hypotheses about form and function from the cellular- to
whole plant-levels.

Applications of machine learning in plant physiology and evo-
lution are only just beginning. Machine learning has been suc-
cessful in predicting real-time photosynthetic status; for example,
deep learning using hyperspectral reflectance in wheat has been
used to predict electron transport rate, CO2 assimilate rate, sto-
matal conductance, and more (Furbank et al., 2021). Our
machine learning models were limited in several ways; perhaps
most by the degree of missing data and class imbalance. Our
greatest model improvements came when using ROS, suggesting
that measuring new mCAM and pCAM species to reduce class
imbalance will increase model accuracy. If missing data could be
sufficiently reduced, imputation strategies may facilitate the use
of models beyond XGBoost, which allows missing data. In addi-
tion to our machine learning models, we hope that the tools and
methodology developed here for measuring anatomy and

merging sequence matrices will facilitate future studies of
anatomical evolution. Although software exists for taking mea-
surements from images (e.g. IMAGEJ; Schneider et al., 2012,
which we used for portions of this study), making dozens or hun-
dreds of measurements needed for phylogenetic studies remains
time consuming and the results are not easily reproducible. Our
image segmentation software, MINICONTOURFINDER, can be
automated from the command line, quickly segment and mea-
sure image features, and record associated metadata so exact mea-
surements can be reproduced. Finally, our strategy for combining
sequencing data types into a single phylogenetic analysis is flex-
ible and in theory adaptable to any sequencing strategy. Most
clades have reference, or near-reference, quality genomes within
c. 75Ma of their focal taxa (as in this study; Cheng et al., 2018)
that can serve as common maps to identify overlapping genomic
regions, and high-quality transcriptomes (Matasci et al., 2014;
Leebens-Mack et al., 2019) or targeted sequencing data (Johnson
et al., 2019) for constructing backbones in larger phylogenies.

In conclusion, with a broad sampling of anatomical traits from
thousands of angiosperms and a detailed phylogenetic study of
the Portullugo clade, we provided support for hypotheses of
CAM anatomical evolution. Our findings suggest that even
weakly expressed CAM is correlated with larger mesophyll cells,
and that decreased intercellular airspace in photosynthetic tissue
is associated with a transition to using CAM as the primary car-
bon fixation pathway. Furthermore, our findings point toward
possible evolutionary constraints on pCAM evolution, such as
annual life history. We were able predict CAM phenotypes from
a handful of anatomical features, which represents a successful
first application of machine learning to this problem, but also
highlights the paucity of anatomical data for species capable of
weak or facultative CAM. As data accumulate, we hope that these
correlations will be continuously evaluated across vascular plants
with tools that may allow causal evolutionary inference, such as
phylogenetic path analysis (von Hardenberg & Gonzalez-Voyer,
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Fig. 6 Phylogenetic threshold model correlations. The distribution of correlation coefficients (r) between Crassulacean acid metabolism (CAM) phenotype
and (a) log10-transformed mesophyll cell area (MA), (b) intercellular airspace (IAS), and (c) leaf thickness (LT). The grey histograms show the frequency of
r-values visited by the MCMC sampler following a 20% burn-in period, red lines show the median r-values, and dashed black lines show the 95% credible
interval (CI).
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2013). We expect that efforts to quantify key anatomical para-
meters for a diversity of CAM phenotypes will more sharply
delineate the anatomical requirements of even a weak CAM cycle
and demonstrate the anatomical and biochemical interplay dur-
ing the evolutionary transition to a pCAM physiology.
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